同乐城tlc_同乐城tlc备用网址【同乐城登录】
仪器仪表
您所在的位置是:同乐城tlc > 仪器仪表 >
仪器仪表
您所在的位置是:同乐城tlc > 仪器仪表 >

仪器仪表

全球最先进探测仪助力首次窥见引力波“真容”

发布时间:2020-05-01 22:17    浏览次数 :

近日,令科学家们第一次得以窥见引力波“真容”的机器——有史以来最先进的、用于探测宇宙中最轻微振动的探测仪开始受到越来越多的人关注。  据法新社2月11日报道,置于美国地下的这两台探测仪,名为激光干涉仪引力波观测台(LIGO)。其中一台位于华盛顿的汉福德,另一台位于约3000公里外的路易斯安那州的利文斯顿。  报道称,观测台的建设工作始于1999年,并在2001年到2007年间开展了观测工作。之后,这两个观测台经历了一次重大升级,令其功能增强了10倍。  2015年9月,升级后的高级LIGO探测仪首次开始全面运转。当月14日,路易斯安那州的探测仪首先捕捉到了一个来自13亿年前南部天空的引力波信号。  报道称,这种波是一种对于太空中的波动的测量方式,即拉伸时空结构的大规模质量体的运动所产生的影响——这是一种将时间和空间视为一个单一的、交织的连续统一体的方式。  7.1毫秒后,华盛顿的探测仪也捕捉到了相同的信号,这使得科学家们能够证实这一发现真实不虚。  报道称,这些超精密工具通过利用单个长约4千米的大型激光干涉仪工作。这些干涉仪都被埋在地下,令其能够得出最精确的测量结果。  这种L型仪器根据激光物理学和空间物理学原理追踪引力波。它们不像望远镜那样依赖天空中的光线。它们感知太空中的振动,这种优势令它们可以揭示黑洞的特性。  麻省理工学院的高级LIGO项目负责人戴维·休梅克说:“当一个引力波通过太空传播的时候,它便会拉伸时空。”  报道称,简言之,引力波探测仪“就是一台将太空中的波动转变为电子信号的大型仪器”。 标签: 激光干涉仪 探测仪

北京时间9月3日消息,据国外媒体报道,在美国路易斯安那州的LIGO附近,汽车一旦进入方圆2.4公里之内,就要以每小时16公里的限速行驶。这是因为LIGO天文台中装有一台巨大的精密设备,哪怕再微小的振动都能被它捕捉到。

作者:文/虞子期

▲位于美国路易斯安那州的LIGO探测器。为准确捕捉细微的引力波扰动,该探测器的干涉臂长达4公里。

根据科学最新报告显示,在LIGO项目第三个观测期开始的两周后,科学家们可能发现了另外两个新黑洞合并的引力波特征,虽然科学家们尚未发布出“引力波源头”初始位置的任何细节,但引力波传感器检测到了不同的两个事件,并表明它们是两个黑洞的碰撞。两颗中子星的碰撞,又或是混合碰撞,它们都会产生相应的引力波和光线特征,这个被称为Q3的观测期将还需要持续一年的时间。

因此,在LIGO天文台工作的科学家们必须尽最大可能排除所有可能的噪音源,包括降低探测器附近的车速、监测地面的细微振动、甚至用特殊的钟摆系统将设备悬挂在空中、从而将振动降到最低等等。科学家殚精竭虑,都是为了在地球上打造一个振动最小、“最安静”的场所。

图片 1

为何LIGO的物理学家们如此执着于排除噪音和减少振动呢?要理解这一点,首先要明白引力波究竟是什么、以及LIGO是如何探测引力波的。

黑洞合并引力波的发现过程

根据广义相对论,空间与时间都是同一连续体的一部分,这个连续体就是所谓的“时空”。在时空中,迅速加速的大型物体可以产生引力波,就像石头扔进湖中时产生的一圈圈向外扩散的涟漪一样,这些引力波便体现了宇宙纹理的拉伸与收缩。

根据科学记录显示,在4月8日,科学家们是第一次新的检测到。在时间过去一周之后,三个“超灵敏”的引力波仪器开始了新的观察。这一次观测也标志着三个不同的探测器设施,第一次进行共同合作观察,它们是两个激光干涉仪引力波天文台前哨(位于华盛顿州和路易斯安那州)和处女座探测器。科学家们能够在仙后座(Cassiopeia)附近找到信号起源的天空,它的距离大约是50亿光年。等这个信号得到确认,该团队便能计算出该事件碰撞中所涉及到的质量。

要测量这种时空变化,就要用到一种名叫“干涉仪”的仪器,它的原理如下:当引力波朝一个方向拉伸时空时,也会使时空在垂直方向上发生收缩,假如水中有一枚浮标,当一道水波经过时,浮标就会随之上下浮动,而当引力波穿过地球时,地球上的所有物体也会像这枚浮标一样轻轻震荡,只不过是前后振动,而非上下振动。

图片 2

LIGO探测器由一个激光光源、一台分光器、几面镜子和一台光探测器构成。光束离开激光器后,被分光器分为相互垂直的两束光,然后分别沿着两条干涉臂运动一段相等的距离,被干涉臂末端的镜子反射回来,再击中光探测器。当一道引力波穿过干涉仪时,其中一条干涉臂便会稍微拉长、另一条则会稍微缩短,因为如前面所说,引力波会在一个方向上拉伸时空、同时在垂直方向上压缩时空。这种变化极其微小,却可以通过击中光探测器的光线反映出来。LIGO的探测敏感度有多高呢?相当于在测量从地球到最近的恒星之间的距离时,误差不超过人类头发的直径。

时空中的涟漪从源头向外传播

为达到如此惊人的敏感度,科学家必须尽可能排除任何可能对这条精密设备造成干扰的因素。首先,这两条4公里长的干涉臂是地球上最完美的真空环境,内部几乎没有一个分子,因此没有任何东西会影响光束的行进路线。探测器周围还装满了各式各样的监测设备,如地震仪、磁力计、麦克风和伽马射线探测器等等,以便及时查明并清除数据中存在的干扰。

当某个对象本身越大,那么它可以使得时空扭曲的程度便越深。用我们生活中的一些客观现象也可以举例说明,例如:地球可以像蹦床上的保龄球一样,去扭转它周围的时空。引力波的存在,就像是时空之中的涟漪,会从它的源头向外传播开来。

科学家必须及时找出任何可能对信号造成干扰、或可能被错误地解读为引力波信号的影响因素,并将其排除。这些因素包括探测器的自身缺陷,或者并非由天体物理产生、但可能被仪器检测到的干扰信号。物理学家甚至还要考虑构成探测器镜面的原子的振动、以及电子元件中电流的偶然波动。而从更大的尺度而言,大到一列从附近经过的货运火车、小到一只喝水的乌鸦,都可能造成干扰。

科学家们认为,两个及其密级的物体以二元对的方式“互绕轨道”的时候,便会产生足够强大的引力波,比如两个黑洞/两个中子星/一个黑洞和一颗中子星这几种情况。正是因为这两个物体之间发生了相互作用,所以才导致了时空的旋转,然后便导致了涟漪的产生(理论上可以用强大仪器进行测量)。

而这些干扰可以说极为棘手。有一段时间,测量引力波探测器周围地面运动情况的仪器总能探测到一个数据尖峰,并且始终找不到原因。一直到几个月之后,科学家才找到了问题的根源:一块石头卡在了一套通风系统的弹簧和地面中间,导致通风系统的振动情况无法被反映到探测器那里。可见在探测来自遥远宇宙的微小振动时,具体还要取决于地球上的实际情况。

图片 3